PMM U.S.S.R.,Vol.49,No.6,pp.704~712,1985 0021~8928/85 $10.00+0.00
Printed in Great Britain Pergamon Journals Ltd.

ON THE OPTIMAL CONTROL OF INTEGRAL-FUNCTIONAL EQUATIONS”

L.E. SHAIKHET

The problem of the optimal control of stochastic integral-functional
egquations of neutral type with an intergral quality functional is considered.
For the case of a linear quadratic problem an explicit form of the optimal
control is presented.

A class of equations which originated in the synthesis of Volterra
equations, and stochastic differential equations with after-effects of
neutral type are discussed. The problem of the optimal control of such
systems is an essential development of the theory of controlled differential
equations /1-8/. Examples of real objects whose mathematical models
contain eguations with an after-effect are discussed in /9/. A study of
integral eguations of neutral type is essential in controlling the motion
of bodies in a continuous medium, /10/. Volterra eqguations first arose
in the theory of creep and form the basis of this theory /11, 12/.

1. zet {& 1), J (u). U} be a certain problem of optimal control, with the trajectory of
motion E, (1), the guality functional J (u), and a set of feasible controls U. Also, let up and
u; be two elements from U, close to each other than £ > 0, and identical when ¢ =0, for
which the limit

J* (ue) = limeg == [J (ue) — J (o] (1.1)

exists.

1f u, is the optimal control of the problem {&, (1}, J (u). U}. that is J (uy) = infuze/ (u). the
quantity J’ (u,) is non-negative. Thus, the inequality J'{u,) > ( is a necessary condition for
the optimality of the control u, In some cases it can be used to synthesize the optimal
control.

The aim of the present paper is tc caleculate limit (1.1) for a problem of control with
the trajectory of motion given by the stochastic integral-functional Eq.{(1.2) and the guality
functional {1,3)

1t
=)+ Q68 + A, 585 u(),ds) (1.2)
4]

808 = ¢,
At ssquby=c(l.s.q Whx b, s, q)w{t +7h —
u (1)) — S clzitos, gy {le 1 5 R) d2)

T
Juy=M {F 05+ § 6 (s, 0.k u (s))ds] (1.3)
[}

We will introduce the fcllowing notation and definitions: {2, 0. P} is the given probabilit:
space; {/,} is the stream of the o-algebras [, T a.ft={0.Th M, = M{- 1 llgllliql,) is the
norm of the function ¢ (1) defined by the relations

N lle = [supeae Mg ()] 7]

(g 1= [supigro.r)¥ |4 QP
H,(H,) is the space of f, (f,)-measurable functions ¢ (1). ¢ (t) = R", t = (— oo. 0] (10, T]) which are
continuous from the right and bounded from the left, and are such that |igllp<<oo (J@ll, << o)
U is the set of feasible controls, that is of f,-measurable functions u(f). u(f)= R, t=10, T}
for which there exists a solution of {1.2), and the functional (1.3) is finite; U, is the set
of f,-measureable functions u (f).u (f)== R, t=10. 7] such that llullj <Cee; D (x) is the set of
fi-measurable functions ¢ ({) such that for certain a > 0 and ¢>0, the relation Mg u)—
)P elt— sl holds for any t and s from the definition domain of ¢ (t); and S denotes a
set of non-decreasing functions A (1). T = (— o.0] which are continuous from the right, have a
limit on the left, and are such that
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0

§ a4k (1) < oo

—ct

We shall say that the function K (1) from S has an isclated step at zero if there exists
8 >0 such that in the segment [—§,0] it has a unique step at zero: 4K (0) = K (0) — K (~ O);
S, is the subset of the functions from S which have an isclated step at zero, less than unity,
that is dK (0)<1; S, is a subset of the functions from S which are continuous in a certain
sufficiently small vicinity of zero [—08, O] (note that for T<<0 and K,(0) = K (—0) it follows
from K({r)e=§, and K,(t) = K (1) that K,{(1) = So:; V, is the set of functions R (t, 1),t [0,
T], negative and non-decreasing in 1t & [0, #] such that

1

Supgt<T SdR {t, 1)< o0
[}
and §, denotes the subset of the functions K (1) from § for which the kernel dK(1—{) has a
resolvent in V.
If X and Y are two normal spaces, and B (z) is a certain mapping of X and ¥, then V B ({(z)
is the Gateaux derivative of this mapping. For fixed z,& X V B {(z,) is a linear operator
mapping X into Y ({see /13/, p.471). For arbitrary z,and r; from X the relation

1
B (11) — B (20) = S VB (2o + T {1y~ 20)) (2o — 21) a1 (1.4)

holds. If Y = R!, then <(VB(z,), z) is the value of the linear functional V B(z,) on the
element z= X (see /14/, p.62}.

The letters ¢ and a {(with indices or without) denote various positive constants, a A\ b =
minla, . The scalar functions F (¢). G (t, ¢, u), the n-dimensional functions @{t, ¢), a{l, s ¢,
u), c(z:t. 8, @), and the n X m matrix function b (l.s, ¢) are defined for 0t T, 2= RY,
u= R'. 9 H,, The centralized Poisson measure +°(t, A) with parameter tII(4) and the m-
dimensional Wiener process w (!) are mutually independent and f,~measurable; % (f) is an f,—
measurable random process, and 6 is the family of shift operators: 6I(s) =t (1 +s). sLO0, t >
0.

For t<C0, the process L {l) is assumed to be known, and at the same time 6,8 = ¢, = H,.
For t>0 it is determined byEq.(1.2)., It is proposed that the "splicing condition",
characteristic for equations of neutral type (/9/, p.28).

G (0) = (0) = @ (0. ¢,) 1.3)
is satisfied. Let

ug= U
t _du ISt CleltlT (1.6)
ue )—luo(t), 1= [0, TIN[to— &, 1)

Gelt) = — (B () — B (D) pelt) = (D(t, 8%) — D (£, B,5))
Celtis u, ds) = A (1.5 6,5 u. ds) — A (1.5, 8,Z,. ug (s), ds)

t,rt
a}c(t}=—;— \ Co(tys, vy dsy, t=[ty—e, T}
t

i
—E

Celt,s,uo(shde).  t=[to, T)

1
&

|

Pe (1)

Pat e N

where ¥, is the solution of Eg.(1.2) with the control u, and g with the control u,.
Assuming that pe{t) =0 when t=1[{U.#]. and 7. (1) = U when t = [0, {, — ], we obtain
e () = Me () -~ pe () — pe (). ¢ =[0. T}
Let
et () = Ea () — T(Ee (1) — Eo (1), T=[0.1]

1
@ (1) = VO (¢, 07 dr, €30
¢

3
At s k)= Va0 5805 us(s) )T, €30
0
Then
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1
Pet)=Dc(t) 09, 0e(t) = Aclt 5, ds)0,,
t

that is ¢, (!) satisfies the equation
t

ge (t) = 1: (1) + e (1) 8.0 + § Ae (1,5, d5) 8,5 4.7

tn

Also, consider the equations

i

go (1) =0 (1) + Da () B0+ \ Ao(t, 5, ds) 8,50 (1.8
i,
No (1) = a (1. 1. BEg. V) — a (-, uq (fo)) (1.9
Assuming that
t
oe (t)= Y. (t) 0,0 — \ ¢ (t.s,ds) 8570 {1.10)

1
Y (t) = Qe (1) — Dy (1), Be(t,s, h) = A (L. s, h) —
Ao {t. s, h)
Lt)=ge(t) — goll). Vel)=Mc(l) — o (1)

we obtain

1
I (t)=;s (1) — e (t) = tis (1,) 0. "'g Aet.os, d") Ugle (1.“)

Notice that the equation

(U (ue) = J (we) =M [ 4 (F (Br&) — F (Ork)) + (1.12)
1,
+ § (665,88 1) — 65, 8.k, uo () ds +

1,—¢
t

+ (66 8iEe uo () — 6.6, Bk, w0 (9)) s |

t

follows from (1.2), (1.3) and (1.6).

Let us introduce the following ccnditions:

1 c e Hy 22 nm=H;: 3 uy=Ug 45 gD () 35 n=D (a); 6% ug = D (ay); 7°.  The random
quantity v is f,_ -measurable, anc .1]]1";°<oc. The fcllowing notation is usec in conditions

8°—14° : -
G
Qiff = Q ¢ (7) [ dE, (), Q;=0¢", Ka(1)=K(z,7)

0

Pi={ [e1()— g (1) [ 4K, (1)

—

Ry=\ ()= ¢ ()] K, (1)

¢
Z={ la(lem]dk;0
Ljf={—]u}® = w0 -0 + Q)
8°. The functions @, a. b and ¢ are such that

lQ)(f»CF'l)\<Qo+Q:ol- la(1~s~¢'1‘“)|2<(1+
Iulz)Ql—rOm‘
[6(t, s, ) |2 <@+ 00, le(zitis, g)|* << @ + 0yt

9°. The functions @, a. b and ¢ are such that
[ D gy — D (1o, §2) | < Pyo + | 1y — 2[5y
Ja(ty, 814 §po Uy) — a(ly 830 G0 Ug) |2 Py + | uy —
ug |2 Q)+ ([ ty — fy % + [ 8y — s, |2 Lyy!
[ Bty 51 G1) — & (1 S @) | 2 Pyy + | 1) — 13| Ly°
J ez ty, 510 §1) — € (35t S, @) | 2K Py + | 8 — 45 [BLyy
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10°. The functions @, a, b and c have a Gateaux derivative with respect to ¢, and at the
same time for any ¢, ¢, from KN,

| VO (t, 1) ¢2 | < Qot Ve (2 8, 8 1) 9| ' 0
[ Ve (tys, @, u) @ |2+ | Vb (t 5 1) 0 | * < On®

11°. The functions ®, a, b and ¢ have a Gateaux derivative with respect to @, and at the
same time for any ¢,,¢; and ¢ from H,,
LD (1, ) — VD (L, @)) 9 [ * +
| (Va(t,s, @ u) — Va(t,s, ¢, u)) 9%+
[ (Vb (ty s, @) — Vb (t,s, @)@ |* < Ry
[(Ve (2t @) — Ve (zi b8, @) @ | ? < Ry

12°. The functions F and G are such that
[F(g) | <@+ Qal
IG(t,(pl,u)|<(1 +Iul’)01+0n‘
13°, The function G is such that
G (4 G1 ) — G (t G0 ) | < (L)' ] g — p | -~ Pul= | ;= 5 [4Ly?
14°. The functions F and G have a Gateaux derivative with respect to ¢,and at the same
time for ¢,,¢, and ¢ from H,,
(<VF (@) e | <O — 4,
| <VG (t, ¢,. u). G | = (4 *‘I“I)OI - Z
PV (@) — VF (g2). ¢ 1 — | V6 (2 ¢p ) — VG (8 ¢ao 1) 63 | < Ry

It is assumed in Conditions 8°=14° that
Ke=5 78 K=K —\K (2 (dz) =

We shall assume that the functions A, A,, K, are the same for all conditions.

Theorem 1. Let Conditions 1°-14° be satisfied. Then for any ¢, = [0, 7] the limit (1.1),
(1.6) for the control problem (1.2), (1.3) exists, and is

V' () = M [G (24, Uy fo, v) — G (-, uy (1)) = (1.13)

v
(CF (Brko), 8rgo> = | (TG (v, Uk, 2 (), Uy0) ds]
t

¢

where ¢, (t) is the solution of Eq.{l.8).
2. The following assertions are necessary tc prove Theorem 1.
Lemma 1. Let w« (/) be a non-negative functicn which satisfies the inequality

4

a) <Bt)— Sat+9dh(), t=[0,T], KE=87S

Zt

where f (f) is a non-negative, non-decreasing and continuocusly differentiable function. Then
a (s) < ef ().
Proof. We introduce a sequernce cof functions v, (1 such that
0
wO=30, o=p0+ (v, tr00Ke, =12
—t
It can be shown that ya()>v,.,(® for all n=1,2 ... and all te(0,7]. Let a,(t) be the
solution of the equation

0
a(ty =B 1)+ { et +5)dK (o)
-1

This solution exists and is unique (see /9/, p.30). Thus limy, () =2,(t) as n —oec. with a (/g
2, (0. We have

t t t
i) =Bit) +{a(cieh s —n =B - {aRw.sp@) < Bt [ 1=V aR @ 0] <cp

o o - o -
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Theorem 2. Let u= U,, and let Conditions 1°, 2°, 8° and 9° be satisfied. Then a unique
solution of Eq.(1.2) exists in H,.

Proof. Assume that

8k, =9, 220, L) =1 (21
1

Broa (1) = 1) + O (2, 8knu) + § A (¢, 5, 84En, 1 (5), ds)

() =M @O)F 2 ()= suPocicttn (5)

The function %, (!} is uniformly bounded. In fact, it follows from Condition 8° that

[ b (1 —dEo(O)) << e + i:l(‘)H- (2.2)
§ 1o ¢ + )| dKo(s) +| $4 205, 848 u (s), )

From Conditions 1°, 2%, and 8°, the properties of stochastic integrals (see /15/, p.138)
and Lemma 1, we can obtain the estimate

1
n+l
) <c[1+ (m@as] oot + m i L0 @3
[

whence follows the uniform boundedness of z, (1)

Now let z, (f) = suPpgsct M | &, () — &ny (5) 2. Using Condition 9°, similarly teo (2.3} we obtain
Zoy () << 2 (D) (eTVonY, 5 {T) << oo, and limz, (1) =0 as n-—>o0 uniformly in t==1[0, 7] Consequently,
E, (1) converges in the mean square to a certain process E(f) which is a unique solution of
Eq.{(1.2), with [JEl; << oo (see /15/, p.(238),

Notice that if Conditions 3°and 7° are satisfied, the control u, belongs to U,

Corollary l. Let conditions 1° 2° 8° 9° and 12° be satisfied. Then an arbitrary control
from Uy is feasible, i.e. [y U.

Corollary 2. Let Conditions 1939, 8° and 9° be satisfied. Then there exists in H, a
unigue solution of Eq.(1.2) for the control u, If additicnally, Condition 7° is satisfied,
then there exists in H a ungiue solution of Eg, (1.2) for the contrcl u,. If in addition
Condition 102 is satisfied, then unigue sclutions of Egs.(1.7), (1.8 and (1.11) exist inp H,.

Theorem 3. Let the condition (1.5 and Conditions 1°—6€, 8° and 9° be satisfied. Then
t, = D (3). a=minll. a; a; 2a,, o a7, @)

Proof. The existence cf

i

o fcllows from Corollary 2. The inequality
Mt () — LUty — 6 Yy, ,s10.T]
is proved in two stages. First, let f,=0.f, =1 z{f) = Mg (1) —qe(0}|*  An estimate of
| 86 (1) — g0 (0)| analogous tc (2.2) is obtained frem { .2) and (1.5). Then using Conditions
1°,3°—=5°, 8%, 9°, and ;< H,, ané the relations
MU0 —qO*< 2+~

we derive the inequaiity
-0
2 (1) «ge[za—;- (o + t)ng(T)}
-1

Hence (see Lemma 1) = () <{ ct®. Now asguning that
L=t<t;=t+48, z2() =M+ 8)—E{@D]?
making use of the similar previcus estimate we finally have 1z (1) < ¢A%. The thecrem is proved.
Lemma 2. Let Conditions 10-9° be satisfied. Then uniformly in ¢ & [{,. T] we have lim,.
Ml ()] =0
Proof. Let us write y,() in the fcrm

&
4
o (1) = Z & 1)
i=1

11
Biy= \ latt,s 0%, ) —ait,s 8L, v)]ds

te—e
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1,
s = { la(ti2,0%,v)—alt 10,88, v)]ds

te—¢

t,
sy = { [0t 10,8, fo, o (t0)) — @ (8, 2,8 %o, uo (5] ds
t,—-¢
1,

st = § [t 88— bt 5,88 dw ()

t,—e
3

8 (1) = S g [e(zit, 8, 8,) —c(5: 8, 5, 8,E0)] W (ds, di)

t,=e

As in /16/, the estimates
M) peet, MG et (e +e™), M[&ht)p<
e (6% f e L 6™, M8 () P+ M1 () < ce?
follow from Condition 9° and Corollary 2. This proves the lemma,

Lemma 3. Let Conditions 1°—=3° 7°—14° be satisfied. Then, uniformly in te{t, T] we
have lime.o M| L (1)|%2 = 0.

Proof. By (1.10),

4
Mir01R<<e Y &)

1=1

b=\ MI[TO (2,07 —TD (1, 85)] 8,g0 12 0t

Crd e OF.

S ()= \\M|[Va(t,5,80." u(s)— Va(-,6,5,)]8,qdrds

877E

8 (2)

I
L B S
Sty P

MI[Sh (8,5, 8,07 — Vb (-, 8,E)] 8,40 |2 d1ds

1 Vs"te

1
8 (t) = ( SSM [I¥e (55 1,5, 8,47 — e (-, 8,Ea)] B,g0 12 Il (d2) ds
t, o

Let 7y (s be an indicator of the set {w: ¢, () > N}). By expressing g¢,(s) in the form ¢ () =
9o () Iy () + g0 (8) (1 — ypn (s) and making use of Conditions 10° and 11°, we can show that
& (1) Teli qouy 1 4 e2N2 [ g 17
For any §>0 an N exists such that “guyy P << 8'(2). Let us fix N and select & so.that
£2N2 g W2 < & (2). Then & () <8. Similar estimate hold for 6,(),i=2,3,4, as well. Thus, for
any §>0 we can find ¢>0 such that M| () <b. The lemma is proved.

Corollary 3. Let Conditions 19~11%be satisfied. Then lime ML (0)]|* =0 uniformly
in 1= (t,. 7).

Proof. For any 08>0 we can find e>0 such that M{{ )P+ M|y, ()2 <6 (see Lemma 2 and
3). Assuming s, (1) = sup ..M Il (s, similarly to (2.3) we cbtain

1

X (t)gc[t\fs 2, (:)a‘:i

e
Hence, by the Gronwall - Bellmar lemma, we obtain the necessary proof.

Lemma 4. Let Conditions 1°9—10%, 13° be satisfied, and let

g (s) = M |G (s, 8,5, v) ~ G (s, 0,80, ug (5))]
t.
P
Be=— 5 g: (s)ds
t%e
Then p = lime, us = gy (10)-
Proof. Suppose that
1,
| :
T M (61,05, 0) = 6k, B %0, 1)) ds =
1—¢

L

, &
T MY 16t 8,50, o (1)) — G (s, 8,5, ua ()] as

1=

[

£
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Then p,=p+8, Using Conditions 13°, 3°, 60, 7°, Corollary 2 and Theorem 3, we can show
(see /16/) that

18 1< e[V et 4 €% o €% 4 €/2 4 c2/2)

i.e. lim, &8, = 0. The lemma is proved.

Lemma 5. Let Conditions l°-—-ll°, 14° be satisfied, and let
Be==—— M [F (878) — F (0rks)], B =M (VF (8zk:), 770>

Then lim,. B = B, and in addition

. 1
llmho

"‘!/‘ﬂ

\ [G (5, 8,8, uo (5) — G (s, eao.uus»]dszMSWG(s, 0,8, o (5)), 8,90 ds

Proof. Suppose that
1
8 = M CVF (8780, 8rl> + M (TF @00 ~ TF @78), 89,5 dt
[}

Then B,=p +§,. Using Condition 14° and Corollaries 2 and 3, we can show that
lim, 8, =0 (see /16/). The proof of the second assertion is similar. The lemma is proved.
Now the proof of Theorem 1 follows from (1.12) and Lemmas 4 and 5.

3. We shall demonstrate the possibility of a synthesis of the optimal control with the
help of the condition J' (u,) >» 0, using as an example the following problem of controlling
linear equations with a guadratic gquality functicnal

su(s)ds (3.1)

oe/;.‘
1~

t(t Y dK (8, ) E(t - 5) +

T
Jy=M [é"‘ (MHET)+ L u* ()N (9 u (s)ds ] (3.2)
0

Here 1 (f) is the random process satisfying Conditions 2°and 5°; a (¢, s) is a non-randor,
bounded n ¥ ! matrix, H8lderian with respect to both variables; N (s) is a non-random, Hclder,
bounded and positive [ 2 ! matrix; H is a non-random, non-negative n > n matrix; and K (t, s)
is a non-random n X n matrix such that

supgurer | R (1 8) [ dE (). Ko= 57 S,
1 dK (1. 8) — dK (1, ) | << |ty — P AR (s)

Suppose that dR {{. 1) is the resolvent of the kermel dK (1.1 — t). We assume that

t
Yl i ==ft)+ SaR@, D1
1,

for an arbitrary matrix f(1.s). Then
Go () =4 (. te. a (-, 1)) (v — ug (t))., t& (1. Tl
Let us write J' (u,) in the form
J'(ug) = MU — ug (1)* N (20) (v — ug (1)) +
2 (v — ug (1))* (N (2) ug {to) — ¥* (T 1o, @ (-, to)) HMpEo (T))
For J'(u,) to be non-negative it is necessary and sufficient that the optimal control
of problem (3.1), (3.2 should have the form
Uy (tg) = —N7 (L) 4* (T, 2o, a (-, to)) HM &, (T)
Computing AM; % (T) from (3.1}, the control u,(l) can be converted to the form

t,

wolto)= p (0 [ 2o (te) + § ¥(T, 0,01, (-, ) ua (5)ds |
0

plte)=— N1 (to)4* (T, to,a (-, t) H[E —

T
(¥ (Tosa (- )N (D5 a(-,5) dsH |

1,

Loty =4 (T 2o, b (-, 10)) + ¥ (T 1o, E)Ealto) +
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I
$ (T 00,dk0 () b(e), bt 8) =M, (@) —n(s)
[}
ag, (2, 8) = a(t,s) —a(ty, s), dKi (t,8) =dK (t,s — 1) — dK (5. 5§ — t;)

Let Q(t, s} be a resolvent of the kernel p () ¥ (7.t a; (-, ). Then for any arbitrary (e (0, T)
the optimal control takes the form
t

wo()=p ()t () + § 0 (t,5)p () Lo (s) ds

On subsitituting {,(t) into the above we obtain

u(t)=a(t) +p@)v(T,t E)ba () + {dRu(t, 1) Eo (1) (3.3)

a(t)=p@ V(T t,5(-, )+ Q) () (T,5,8(-,9)ds

dRo(t, 1) = p () W(T,1,dK, (-, 7)) + Q(t, 1) p() 9 (T, 7, E) dr +
t
(0¢.9p ()% (7,5, dK, (-, ) ds

Clearly, the control u, obtained, as a feedback, is feasible. Here the proof that the
solution of (3.1) exists and is unique is analogous to that of Theorem 2.

Using the methods developed in /17—19/we can demonstrate that the control (3.3) is e-
optimal for the problem of controlling a quasilinear integral equation which differs little
from Eq. (3.1).

4, Example 1. The controlled motion of aircraft is described (see /10/) by systems of
linear integro-differential equatons of the form

t t
=050+ {at-0t@d+ae—gimatamem+omw® &1
0 0

As mentioned in /10/, the creation of effective methods for optimal control by such
systems "still remains an unsolved problem".

Let us show that Eq.(4.1) reduces to the form (3.1) and therefore the solution of the
control problem (4.1), (3.2) can be obtained as a special case of problem {(3.1), (3.2).

In fact, on integrating (4.1), we cobtain

t

1
E@=nt+ K9t s+ {a@ua
0 [}

t
N =E=B IO +{c@are),  Ke9=a6+
0

¢
At =)+ Byt —9), Bi(1)=SA‘.(s)ds, i=1,2
0
Let R (t,s) be the resolvent of the kernel K (s, and
T
Bo(‘)=E+S R(T,s)ds, pty=—N1@a*()B>(t)H [E+

!
T

-1
S By (s) a (s) N1 (s) a® (s) Bo® (s} dsH |
1
T

R, (r,:)=K(T,s)+S R(T, ) K (x,5)d1— Bo (1) K (¢, 5)
ot

Then the optimal control of problem (4.1), (3.2) is
t T

up (1) = p (1) [B., % )+ Ro (2, )50 (5) &5 — { B () 4, (9) st (0) ]

] t :

Example 2. Consider the following problem of the optimal control of the stochastic
differential equation of neutral type

E@=0tr(—h)+au)+u () t=(0.T;a%0 hea©7T)

Ty =M [zz(r>+§' u-‘(dda]

- o
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in which () =0 when t< 0, and w(t) is a Wiener process.
Here
it .
AR (t, ) =th(h+1ydr, dR(t, )= 3 b8 (ih + 1 —tydt

1=1

Suppose that (I — t)h is non-integer, r(p=[(T —t)/h} +1, m@, b)=n() for b=1, and m(, b =
(1 ="/t —b) for t=%1 Then the optimal control has the form

up (2) = — m (¢, B) [m (¢, b) (%o (1) — b3a (¢ — &) 4 4" VEe (T — n (£) 1))
-1
i%+ a S m? (s, b) ds]
t
for almost all te[0, 7] (with the exception of =T —ini=1,... [T/
Note that the necessary condition of optimality for stochastic integral-functional
equations was also given in /19/. Earlier it was obtained for stochastic differential equations
(ordinary and partial) in /20—23/, and for stochastic Volterra equations in /24/.

The author expresses his gratitude to V.B. Kolmanovskii for his interest.
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